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Abstract 

Hartree-Fock (HF) method relies in the calculations of nonlinear optical properties (NLO) for benzoic acid molecule. 
Also, another theoretical study is conducted by using the TD-DFT Density Functional Theory through B3LYP/High 
Base Set 6-311++G (2d,2p) on Gaussian program09. Moreover, an experimental study has been done to obtain the 
electrons spectrum for benzoic acid with and without ethanol. While the experimental study is done by using UV/VIS. 
spectrophotometer. Energy gap values of electronic transition between HOMO and LUMO is obtained from theoretical 
and experimental results. Consequently, the theoretical result for determining the energy gap calculated from 
EHOMO-LUMO wasvery close to the results of UV / VIS. spectrum. A theoretical method is considered extremely 
appropriate towards compounds capable of absorbing in vacuum UV. 
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Introduction 

Over the last two centuries, there has been 
extensive study of molecular materials with 
nonlinear square optical interaction (NLO) in the 
electromagnetic field [1–14]. Where the systems 
like this, properties of NLO are commonly 
correlated with linear polarizability (α), second-
order hyperpolarizability (β) and third-order 
hyperpolarizability (c) that mainly derived from p-
conjugated donor-acceptor groups [15–20]. 
Nonlinear optical (NLO) parameters, that 
determine the molecules, reactivity, have enough 
reasons to consider it as one of the main 
advantageous systems due to the ease of 
industrialization [21–23] and flexibility of structure 

[24].  
Tuning at the molecular level of the electronic 
properties offer of such systems their capability in 
the optoelectronics same As an electronic 
mechanism for optical measurement or high 
density optical [25–27]. Not long ago, the topic of 
The subject of molecular switching was fascinating 
in science, varying from biological process 
modeling to molecular electronic device design 
[28–32]. Quantum mechanics calculations are 
theory arithmetic equations designed as 
programming languages, which is successfully used 
to predict cloning energies, repeat molecular 
structures and interpret chemical reactions [33-
36]. 
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TD-DFT, as a fundamental method, effectively 
employed to predicts a wide variety of molecular 
characteristics such as molecular weight 
infrastructure, vibration frequencies and energy 
atomization, energy and electrical ionization [37-
40]. The energy gap in a semiconductor 
represented by the distance between equivalent 
band and the conductance band, while the other 
materials it represented by difference between MO 
[41]. There are two kinds of spectroscopy spectra, a 
molecule undergoes a shift from a high energy level 
to a reduced energy level emitting excess energy as 
a photon, and the radiations are come across in 
absorption spectroscopy as radiation losing the 
number of frequencies [42]. There was an 
important limit known as selection rule; the first 
typeis spin selection rule which happens during the 
electronic transition with no change in spin 
inversion. While the second type is Laporte 
selection rule that related to molecules that have a 
center of symmetry. [43-45]. The chemical 
structure of any molecule iIn the electronic state of 
excitement is totally unlike The ground-state 
system. Franck–Condon principle stated the 
electronic switch: transition is happening mostly 
with no changes in the molecular structure of the 
nuclei, and the nature of structure [46]. When a 
molecule transitions from a gas phase to a solvent 
state, wavelength and absorption intensity are 
affected, it is related to an unequal turmoil of the 
excited and ground the molecule states. It relies on 
the kind of interactions Between solvents and 
solutes at these states, but the absorption spectra 

in highly non-polar solvents keep almost the same 
characters of the gas phase spectra [47-48] 
 

Calculation Method 

Benzoic acid 3d module was built Use the 
application Gaussian View. The equilibrium 
geometries of structures were calculated with 
version 09 Gaussian package[49], and their 
corresponding geometries in the gas phase were 
fully optimized using (TD DFT) the three-
parameter utilitarian Beckes and the useful 
connection of Lee, Yang and Parr (B3LYP) with the 
hypothesis level 6-311++G (2d, 2p) in vacuum and 
ethanol [50-51]. Some parameters of the quantum 
chemical have investigated Nonlinear optical 
properties (NLO) of benzoic in a vacuum used HF 
method. These parameters of quantum mechanism 
are the energy of the highest occupied molecular 
orbital (EHOMO), energy of the lowest unoccupied 
molecular orbital (ELUMO), energy of ionization (IE), 
affinity of electrons (EA), energy gap (EGAP), 
absolute hardness (A), absolute softness (S), 
absolute electro negativity (χ), chemical potential 
(CP), additional electronic charges (_NMax) and 
polarizability (α), and the first hyperpolarizability 
(βo) [52-53]. Moreover, Urea was used to assess the 
NLO properties, and quantum chemical The 
parameters of urea were compared. In this 
operation, the findings have been taken from EHOMO 
and ELUMO without changing. The calculations were 
done by Equations 1-13. 
 

IE (Ionization Energy)= -EHOMO ........................................................................................................ (1) 
EA (Electron Affinity)= -ELUMO .......................................................................................................... (2) 
Egap=ELUMO-EHOMO ............................................................................................................................. (3) 
η (Hardness)= (IE-EA)/ 2 ............................................................................................................ (4) 
S (global softness) = 1/  ............................................................................................................. (5) 
So= 1/ Egap ...................................................................................................................................... (6) 
 (Electronegativity) ........................................................ (7) 
CP= -  ................................................................................................................................................ (8) 
Global electrophilicity index (𝛚)= (−𝐱)𝟐 ⁄2η =2/2η .......................................................... (9) 
NMax= - CP/  ................................................................................................................................... (10) 
N= 1/ 𝛚 ............................................................................................................................................... (11) 
α (Polarizability)= 1/3(αxx+αyy +αzz) ..................................................................................... (12) 
βo (hyperpolarizability)= [(βxxx+βxyy+βxzz)2+( βyyy+βyzz+βyxx)2+( βzzz+βzxx+βzyy)2…………(13)
 
Whereas αxx is the polarizability in the x-axis 
direction, αyy is the polarizability in the y-axis 
direction, αzz is the polarizabilityin the z-axis 
direction. βxxx,βyyy and βzzz are the 

hyperpolarizability in x, y, z-axis, respectively. 

 

UV-Vis Measurements 

Benzoic acid spectra are measured in 
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spectrophotometer device type (sp-3000 Nano). 
The mixture of benzoic acid and ethanol was 
measured under the same conditions. The order 
was introduced to the device like the range of 
wavelength scan (190-800 nm) and to subtract the 
λmax. Water was used as blank with both benzoic 
acid solution and the mixture. 

 

Theoretical Results and Discussion 

Optical devices and telecommunications, 
investigations of nonlinear optical (NLO) properties 
are so important. Electron delocalization and 
molecule planarity improve the molecule's NLO 

characteristics. Computational methods can readily 
investigate NLO characteristics. In calculation there 
was no solvent effect; however, consideration 
should be given to the determination of NLO 
characteristics of the benzoic acid molecule. The 
calculation of specific parameters is done to 
investigate the characteristics of the NLO (Table 1). 
In these inquiries, Urea NLO parameters are used 
as a reference; therefore, it optimized at the same 
theory stage and the same QCDs and provided in 
the same table. 
 

Table 1. Quantum mechanism parameters to investigate NLO properties 

prodrug EHOMO
a ELUMO

a IEa EAa Egap
a ηa Sb Sob 

Benz. 0.484 -9.782 9.782 -0.484 10.266 5.133 0.194 0.097 

Urea -6.727  1.559 9.522 -1.559 8.286 2.633 0.380 0.121 

Benz. 
χa CPa ω NMax αc βo

d 

4.649 -4.649 2.105 0.905 1.597 13.683*10-35 

Urea 6.889 -6.889 0.805 2.616 2.153  3.13*10-28 

ain eV, b in eV-1,c in Å3, d in cm5/esu.
 
QCDs are advantageous by determining the 
molecule activity, and the only benzoic acid 
molecule is given by these parameters. The first 
descriptor to examine is HOMO's power. If HOMO's 
power level is high, HOMO's electrons move faster 
and can pass to higher concentrations. Due to NLO 
molecule activity rises the electron mobility rises 
too. Along side, NLO molecule characteristics rise 
by the growing HOMO's energy level. As stated by 
the NLO classification of the HOMO energy level 
must be as follows: 
Benz. > Urea  
LUMO's energy is the second parameter. LUMO's 
lower energy level means that LUMO's electrons 
can easily be inhabited. Hence, molecular NLO 
activity increases as the LUMO energy level 
decreases. NLO activity rankings must be according 
to the LUMO energy level: 
Benz. > Urea  
The third parameter is represented by the energy 
gap between LUMO and HOMO. By reducing the 
energy between implies increasing a mobility of 
electrons, this promotes the rise of NLO: 
Urea > Benz. 
The chemical hardness and softness are the fourth 
and fifth parameters. The increase of chemical 
softness 
Urea > Benz. 

Alternatively, decreasing chemical hardness means 
enhancing molecular polarization. The correlation 
between the activity of polarizability and NLO is 
directly proportional. The NLO activity ranking 
should be the following in terms of these 
explanations: 
Urea > Benz. 
Optical softness is the fifth parameter of NLO 
activity determination. The increase in optical 
softness implies that the NLO characteristics are 
increasing. The ranking of NLO activities should be: 
Urea > Benz. 
The sixth parameter is the absolute electro 
negativity and chemical potential. With a reduced 
absolute electro negativity electron delocalization 
improves. There is also a direct correlation 
between the activity of NLOs and the chemical 
potential. The NLO activity of the compound should 
be followed according to this parameter: 
Benz. > Urea 
A further electronic charge is the seventh 
parameter. Electronic charging is associated with 
molecular polarizability. The higher value for NLO 
apps is more active. The NLO activity of the 
molecule should be followed according to this 
parameter: 
Urea > Benz. 
The final parameters are molecule polarizability 
and hyperpolarizability. With the rise of the listed 
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descriptors, the NLO characteristics improve. The 
ranking of NLO activity should be: 
Urea > Benz. (α) 
Urea > Benz.   (βo) 
As stated by the above ranking, the compound’s 
NLO properties area little better than urea, and it's 
a good candidate for applications for NLO. 
 

Theoretical Electronic Spectra 

Quantum chemical computations were employed to 
look intoelectronic properties of the compound 
studied. Calculations contain the electronic 
absorption spectra (UV-Vis), like the HOMO and 
LUMO, the energies of orbital. The energy gap ( Eg = 
ELUMO - EHOMO), wavelengths of absorption (λ max), 
and oscillator strengths (f) based on an optimized 
geometry with water, and ethanol, Table 2 and 

Figures 1-2. Frank – Condon principle, which 
determines maximum peak absorption in a UV–Vis., 
performs the calculations involving the vertical 
excitation energies 
Theoretically, spectra for benzoic acid with water 
solvent in Figure 1showed two peaks first at (215 
nm) for π-π*, and second for n- π* at (264 nm), 
while the energy gap equal to (5.7 eV). The second 
part calculations with ethanol. The effect of ethanol 
as shown in Figure 2 two peaks first at (194 nm) 
for π-π*, and second for n- π* at (231 nm), while the 
energy gap equal to (5.9 eV) due to decrease the π* 
level of the polar effect. The calculations contain the 
electronic absorption spectra (UV-Visible), to 
calculate the energy gap in equation 14, such as 
HOMO and LUMO orbital energy: 
 

Eg = ELUMO – EHOMO ............................................................................................................(14) 
and from spectra by using equation 15: 
E=hC/λ ................................................................................................................................(15) 
where (h= blank constant, c= speed of light, λ= greater wavelength 
 

 

Figure 1. Charts showing lambda max and other absorption for benzoic acid solution theoretically by (TD-DFT) 
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Figure 2. Charts showing lambda max and other absorption for the benzoic acid solution with ethanol theoretically by (TD-DFT) 

Table 2. Theoretical results for the benzoic acid solution and ethanol studied. 

Com. Name 
Theoretical Results 

π-π* n- π* 
∆ELUMO-

HOMO 
E=hc/λ f 

Benzoic acid 
with water 

215 264 5.77 5.76 0.0187 

Benzoic acid 
with ethanol 

194 231 5.92 6.39 0.134 

 

Experimental Results 

UV-VIS spectroscopy was used firstly as a method 
in this way by one of the pioneers Pedersen 
[54].The curve of UV absorbance of benzoic acid in 
water as solvent shows two peaks, the first one is 
π-π* at (220 nm) and second at (270 nm) n- π* for 
non-bonding oxygen electrons and the aromatic 
ring respectively, Table 2. The actual lambda max 

represents the first transition due to the uniform 
shape of π levels. While the benzoic acid solution 
with polar effect (ethanol) shifted the peaks to low 
wavelength. The first peak at (215 nm) for π-π* 
whereas the π* level will tend to dawn. The second 
peak present at (255 nm) to n-π* due to polar effect, 
in addition to the possibility of hydrogen bonds 
forming Table 3. 
 

Table 3. Experimental results for the benzoic acid solution and ethanol studied 

Com. Name 
Experimental Results 

π-π* n- π* E=hc/λ 

Benzoic acid 
with water 

220 nm 270 nm 5.6 

Benzoic acid 
with ethanol 

215 nm 255 nm 5.7 

 

Conclusion 

The quantum mechanics calculation of benzoic acid 
molecule presents the electrons transition, λmax, 
oscillator strength, energy gap, and NLO properties. 
The electronic peaks predicted by TD-DFT of 
benzoic were shifted from (215) to (194) nm for 
π-π* and (264) to (234) nm for n-π* in ethanol. The 
compound measured experimentally by 
spectrophotometer device that described the 
electrons transition, and λmax, in addition to the 

comparison between theoretically and 
experimentally results showed by coefficient 
determination value and their convergence. 
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